首页 > 知识精选 >

光学传感的新方法:一种需求日益增加的技术

发布时间:2023-03-25 19:09:02来源:

在过去的十年中,光学传感任务变得越来越苛刻。因此,构建小型化、廉价的传感器变得至关重要,这些传感器可以集成在芯片上,以实现智能手机、自动驾驶汽车、机器人和无人机中的移动应用。此外,算法在传感中发挥着越来越重要的作用,最近的许多发展都利用了机器学习算法。

在《科学》杂志上的一篇新论文中,电气工程系夏丰年教授实验室的研究人员介绍了一种他们称之为几何光学深度传感的新概念。该概念利用了设备技术,凝聚态物理和深度学习的创新,有可能从面向硬件的方法转向面向软件的方法。

该论文是与德克萨斯大学,以色列巴伊兰大学和奥地利维也纳理工大学的合作者共同撰写的。在这个新概念中,“几何”表示传感器输出由多元素数据组成,这些数据可以被视为高维向量空间中的点。“深度”强调了深度神经网络在这种感知方案中的关键作用。

夏实验室的前博士生、该论文的共同主要作者袁绍凡指出,传统的光学传感需要多个光学设备来完全捕获光束的未知特性。这些包括用于测量光的强度、偏振、波长和空间分布的不同设备。所有这些设备加起来,构成了一个笨重而昂贵的系统。

“过去已经做出了很多努力使光学传感设备紧凑和多功能,先进的机器学习算法已经加速了使用小型化设备的光学传感解决方案,”袁说,他补充说,未来的光学传感技术将是一个高度跨学科的领域。“该领域将受益于设备结构的创新,新兴光学和光电现象的演示以及机器学习算法的进步。

夏实验室的博士生、该论文的另一位共同主要作者马超指出,器件可重构性是使用单个器件实现复杂光学传感的关键。

“可以在不同状态下运行的单个可重构设备对于生成多元素光响应数据至关重要,这些数据有时以隐含的方式捕获光的多个未知特性,然后可以使用机器学习算法来解释数据,”马说。

该方案涉及使用可重构的传感器和深度神经网络进行信息编码/解码过程。也就是说,网络已经使用已知的光属性进行了训练,并且可以从可重新配置传感器的多元素输出中提取正确的信息。Xia指出,它解释多元素光响应的方式与图像识别程序的方式非常相似。

“如果你想让它识别图像,无论是狗、猫、人还是汽车,你都会收集大量已知信息的照片,然后对其进行训练,”他说。“然后我们只是给神经网络一个未知的数字,它会告诉你。这里也使用了类似的想法。

研究人员指出,该方案的基本原理不仅适用于光,也适用于其他领域 - 例如,用于感应磁场。夏说,他和他的合作者目前正在研究潜在的应用。一种可能性是使用这种集成传感设备使自动驾驶汽车更安全。

免责声明:本文为转载,非本网原创内容,不代表本网观点。其原创性以及文中陈述文字和内容未经本站证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。